Alfred Wegener

From   

Alfred Wegener proposed "continental drift" theory in 1912 and developed it extensively for nearly twenty years. His book on the subject, "The Origin of Continents and Oceans", went through four editions and was the focus of an international controversy in his lifetime and for some years after his death. Wegener's basic idea was that many problems and puzzles of the earth's history could be solved if one supposed that the continents moved laterally rather than supposing that they remained fixed in place. Wegener worked over many years to show how such continental movements were plausible and how they worked, using evidence and results from geology, geodesy, geophysics, paleontology, climatology and paleogeography.

Although he was the author of a "geological theory", he was not a geologist. He was trained as an astronomer and pursued a career in atmospheric physics. When he proposed the theory of continental displacements (1912), he was 31 years old and an instructor of physics and astronomy at the University of Marburg, Germany. In 1906, he and his brother had set a world record for time aloft in a free balloon : fifty-two hours. Between 1906 - 1908 he had taken part in a highly publicized expedition to explore the coast of northeast Greenland. He was also known to the circle of meteorologists and atmospheric physicists in Germany as the author of a textbook, "Thermodynamics of the Atmosphere" (1911). He also wrote a number scientific papers on atmospheric layering.

Early life

Born in 1843, Richard Wegener was ninth of the eleven children of Friedrich Wilhelm Wegener, an owner of a military uniform factory in Wittstock, in the northwest corner of Brandenburg, about 90 kilometers from Berlin. Richard realized his father's ambition to study theology and become an evangelican clergymen. After his seminary study and ordination in 1868, he spent a year as an assistant pastor to parish in Kolmar, Posen -- the Prussian province centered on the historic Polish city of Poznan. Later, he returned to Wittstock and asked Anna Schwarz to marry him. Anna was herself an orphan, born in the tiny hamlet of Zechlinerhutte and raised by relatives in nearby Wittstock. She and Richard had met as students.

Richard studied Greek, Latin and Hebrew and earned a PhD from the Friedrich-Wilhelms University in Berlin in 1873. In that same year, Richard and Anna took over the Schindler Orphanage (Schindlersches Waisenhaus), a privately endowed orphanage for sons of clergy, teachers, civil servants, landowners and merchants. Richard also began his parallel career teaching Greek and Latin at the Gymnasium zum Grauen Kloster, teaching German literature at a nearby Mädchenschule (girl's school) and holding a chaplaincy at the criminal court in the nearby neighborhood of Moabit.

Later, Alfred Lothar Wegener was born in Berlin, 1 November 1880. Alfred was the fifth and youngest child of Richard Wegener and Anna Schwarz. His birthplace was a converted Austrian embassy at 57 Friedrichsgracht, a scant few blocks from the Imperial Palace, facing the Spree Canal, on the southeastern side of the island. This structure was home to Schindler Orphanage that housed the Wegener family, the thirty or so orphans in their charge, Richard Wegener's assistants in the teaching and daily supervision of the orphans, and the resident domestics under the direction of Anna Wegener.

Zechlinerhütte

The Wegeners had by now been in Berlin for sixteen years and had directed the orphanage for eleven of those years. Now they were successful Berliners, in their forties and with a family. They had a grand residence and access to the parks and immense cultural resources of a great capital city. But when all was said and done, they lived in an institution. The Wegener family needed a true home.

Richard and Anna back to rural Brandenburg, to the hamlet of Zechlinerhütte, where Anna had been born. It took them to a plain but spacious house with extensive grounds, fronted by Linden trees and facing a lake. The Wegeners purchased the house, the barn and some adjacent fields for 20,000 marks. The money was provided by Richard's brother Paul, who had taken over the family's uniform factory in Wittstock, as he was pleased to have his brother closer to home again. Built of oak logs and chinked with masonry, the house had been the manager's house of a crystal glass foundry. An undertaking attracted there in the early 18th century by the plentiful fuelwood from the surrounding forests. But the enterprise eventually failed altogether, no longer able to compete with the industrial-scale economies of burgeoning Berlin, leaving the town to eke out a marginal existence concocted by subsistence farming, woodcutting, fishing and catering to the wants of vacationing urbanites and their seasonal homes.

This place, "die Hütte" as Alfred and the other children called it ,was the family home ever after. It was their vacation and summer residence. When the Wegeners set out for "die Hütte", they traveled out of Berlin by train through industrial suburbs with their smoke-belching stacks and furnaces, out into the surrounding farmlands as far as Gransee, 60 kilometers north of Berlin. From Gransee, the parents proceeded through country lanes with the baggage wagon, while the children hiked the final 20 kilometers from the Gransee Station to Zechlinerhütte through the Menzer Forest, passing only scattered farms and lakes and the minuscule hamlet of Menz on the way.

The children loved the succession of stages in the journey. To leave the bustling train station in Berlin with a mountain of luggage and provisions, to disembark two hours later at the village already "at the end of the line" and from there just to walk away out of the town, and keep walking until the road diminished into a sandy cart track with a grassy median and disappeared into the depth of the Menzer Forest. This great wooded tract, completely cut over in the 18th century to feed the glassworks, had sprung back with the dense character of second-growth evergreen forest.

Cöllnische Gymnasium

In 1890, at the age of ten, Alfred entered the Cöllnische Gymnasium. The Cöllnische Gymnasium's curriculum was, like all truly classical Gymnasien in Prussia, centered on languages and literature, with a pivotal place given to Greek and Latin. Among the modern languages, in addition to German language and literature, there was instruction in French and English. Students also were taught history, religion, geography and mathematics.

German schoolboys of this era devoted an overwhelming proportion of their study time to Greek and Latin. When Crown Prince Wilhelm took the throne in June 1888 to become Kaiser Wilhelm II, the situation changed rapidly. Wilhelm was sympathetic to modern scientific education, an education suitable for an industrial state that also wised to be a great empire, and was interested in the question of educational reform. By 1892, he had successfully ordered a reduction in the number of hours devoted to Latin. In 1897, the minister in charge of Prussia's universities, Friedrich Althoff, let it be known that he intended to alter secondary school curricula to link mathematics instruction to real instruction in physics, allowing physics to become a secondary school subject in its own right.

It appears that Alfred's physics teacher, who was interested in astronomy and had a refracting telescope, recognized Alfred's talent and interest. He invited Alfred to take up the study by joining him in making observations. For the next year and a half, until his graduation, Alfred pursued astronomy whenever time and weather permitted. Walking back to the Gymnasium in the evenings and observing the heavens with his teacher, from the roof of the school. Later, Alfred was leaning toward entering the University of Berlin to study astronomy. In the winter of 1899, Alfred passed his Abitur, the final and comprehensive examination that guaranteed automatic admission to the university system.

Education

Royal Friedrich-Wilhelms University of Berlin

The Royal Friedrich-Wilhelms University of Berlin -- located on Unter den Linden, between the State Library and the Royal Arsenal across the way from the Palace of Wilhelm I -- was, at the time Alfred enrolled in it, one of the largest universities in the world. It had a student body of almost 7,000 and a faculty of 450 professors, 227 of them in the Faculty of Philosophy -- what we would now call the School of Arts and Sciences -- and the remained were in law, medicine and theology.

The true size of the teaching faculty was larger, since the German system usually specified only one salaried full professor and one associate professor for each subject, while the rest of the faculty was composed mostly of Dozenten (assistant professors and the instructors). The professors were giants of international reputation. Their appointments were for life. When they died or retired, there were no applicants for their jobs. The ministry of education formed a committee to rank the three current leaders in a given field. Based on this ranking, a "call" went out to a specific person, named as the successor.

Alfred's first-year academic program was analytic geometry, calculus, physics and chemistry. To these fundamental preparatory studies, Alfred also added a course in "practical astronomy". This is the program he would pursue from October 1899 until the following April (the end of the winter semester).

Adolf Marcuse's "Practical Astronomy" course for the 1899 - 1900 year had three segments. The very first part was "Theory and Use of Astronomical Instruments, Especially for Geographical Position Finding." Marcuse took Alfred and the other students on field trips and taught them to level and orient the transits, telescopes, alt-azimuths and other instrument. He taught them how to calculate instrument errors and how to correct observations for temperature -- expansion and contraction of the instrument itself -- and for the relative humidity -- since the amount of water vapor in the air changed the way the light was refracted, causing a measurable and correctable angular displacement. He also regaled them with stories of expedition science, both from his work in Hawaii and his more recent trip to German Samoa. Alfred had landed not just in an astronomy course in which he could do astronomy, but in one that implied that doing astronomy sometimes involved expeditions to distant places.

In the second wing of the course, Marcuse took the students through a general survey of the fundamental ideas and achievements of modern astronomy. The lectures were illustrated with lantern slides. Marcuse was a prolific photographer. He taught every course using slides and believed that all subjects benefited from profuse illustration.

Finally, in the third wing of the course, the first-year astronomy students accompanied Marcuse to the Royal Observatory, where they watched him and the other staff astronomers demonstrate the photographic methods used to document their observations. The students were put to work with practical exercises of observation, photography -- including the preparation of photographic plates and darkroom work --, and measurements of the shifts in the plates thus produced.

The summer semester of the year 1900 was coming soon and with it a chance to alter Alfred's academic program. It was typical at that time for Berlin students to leave for the summer term, from May to August, especially during their first years. Students headed generally for smaller and rural universities. Meanwhile, for his own first semester away, Alfred settled on the university in Heidelberg. The freedom to move about in this way was built into the German university system. In Germany, admission to any university at all was admission to all the universities in the system. This sytem allowed students to move on to whatever university offered the concentration of disciplines most useful and congenial to them, no matter where they had begun their study. It allowed them to study the subject with different teachers in different locations.

Ruprecht-Karls University, Heidelberg

Heidelberg was far to the west and south of Berlin. Other than Munich and Passau, there were no German universities father away. Heidelberg lay among hills of forest and vineyard on the south bank of the River Neckar -- a tributary of the Rhine --, and about 100 kilometers south of Frankfurt-am-Main. Heidelberg had acquired considerable fame as a scientific and medical university in the middle of the 19th century. It was here in Heidelberg that Robert Bunsen and Gustav Kirchhoff made the fundamental advances in spectroscopy which allowed the analysis of the composition of stars by study of their absorption spectra.

The university also maintained a new astronomical observatory on the Königstuhl, 335 meters above the town. Wegener signed up for the course on calculus given by Leo Königsberger, experimental physics by Georg Hermann Quincke, general astronomy by Wilhelm Valentiner and meteorology by Max Wolf.

Winter Semester 1900 - 1901

Alfred traveled at the end of the semester from Heidelberg to die Hütte, for some vacation time with Kurt, Tony and his parents. It was time to hike and talk with Kurt and plan for the second year at Berlin. Kurt was progressing well in meteorology at the Technische Hochschule in Charlottenburg. Perhaps because of Kurt's account of these experiences, as well as Alfred's own introduction to the subject from Max Wolf in Heidelberg, Alfred thought about adding meteorology to his program.

The schedule Alfred planned for the winter semester of 1900-1901 was more rigorous than that of his first year. The mathematics course was differential equations with Lazarus Fuchs, general mechanics with Max Planck, older theories of celestial mechanics with Julius Bauschinger, general meteorology by Wilhelm von Bezold, geographical position finding and celestial navigation with Marcuse.

Mechanics

General theoretical mechanics is a unified approach to physics through concepts of motion. Students began with the development of a physics of force and Newton's laws of motion. This treatment was then extended to the ideas of work, energy and the "conservation laws", particularly the conservation of momentum and the conservation of energy. Such a course usually ended with a physics of energy based on the formulation of Joseph Louis Lagrange and William Rowan Hamilton. Along the way, students were introduced to the mathematical treatment of classical problems : central-force motions, the orbits of planetary bodies, oscillations, harmonic motions, the motion of rigid bodies -- where the objects treated are no longer considered as point masses with a location only, but have a shape and an orientation.

Celestial mechanics

Take three observations of an asteroid not separated from one another by more than 15 days, or three of a comet not separated from one another by more than 6 days, and compute the elements of the orbit by both the method of Laplace and also that of Gauss.
— Sample problem from Celestial Mechanics course

Julius Bauschinger specialized in the field of determining the orbital paths of heavenly bodies. He fitted in well at Berlin, where many people worked on the measurement and calculation of locations, orbits and distances; the calculation of ephemerides (planetary tables); and the refinement of methods for correcting observational errors.

Bauschinger's "older theories of celestial mechanics" course began with Johannes Kepler, who made the first determination of the laws of planetary motion, and Issac Newton, who had spent much effort on determination of cometary orbits. It then passed through the elaboration of celestial mechanics by Pierre Simon de Laplace, Joseph Louis Lagrange, Wilhelm Olbers and finished with the methods of Karl Friedrich Gauss. In all, it covered the period from 1600 to about 1850. This approach allowed Bauschinger to develop the course as a history of orbital calculation and error reduction. He was in the midst of writing what would become the standard text of orbital determinations, "Die Bahnbestimmung der Himmelskörper" (1906). He was also spending much time documenting the history of the field in Germany and producing translations of hard-to-find earlier works.

The fundamental problem in this branch of celestial mechanics was to find the orbit -- and thus the position relative to Earth at any given time -- of an object -- such as a comet or an asteroid that was moving around the Sun -- and to find it with a minimum number of observations -- usually three. Restricting observations to the absolute minimum also minimized the immense amount of trigonometric calculation required to solve the equations involved in the problem. One took the celestial latitude and longitude (the right ascension and declination) of a celestial object on three successive occasions. Then, using these coordinates and the time of observation, generated a total of nine equations that had to be solved for nine unknowns. There were three principal approaches to this problem, all treated in Bauschinger's course. Each approach had strengths and weaknesses, depending on the character of the orbit being studied, especially its eccentricity and the number and character of perturbations.

Meteorology

The mathematics, physics and celestial mechanics course were mutually reinforcing and had considerable overlap. They also shared the sense of mature, finished endeavors. Their historical orientation, reaching back hundreds of years, seemed to include in its roster of predecessors nearly every great name in physical science.

Meanwhile, the other part of the course, however, felt much less finished. If there was nothing new in the contents of Marcuse's navigation and position-finding course, it had at least the sense of the possibility of novelty and adventure in its assumption that the skills being learned there were for the use of explorers on expedition. This instrumental technique might help find something really new, somewhere.

On the same side of the line, the unfinished side : general meteorology.

Wilhelm von Bezold was the first professor of meteorology in Germany. For all the tremendous attention paid to the atmosphere in the second half of the 19th century, he argued, all the major questions remained unanswered. What drives storms? What is their energetic, their thermodynamic foundation? How do centers of high and low atmospheric pressure interact? How do clouds form, why are there different kinds of clouds and cloud shapes? Why does it rain and snow and hail? Are there rhythms and cycles longer than the seasonal year? Where do tornadoes and waterspouts come from? The questions went on and on. Meteorology as presented by Bezold was about not weather forecasting, but the strugle to create a physics of the atmosphere.

With few exceptions, meteorology in the previous fifty years had tried to study the three dimensional structure of the atmospher using only two-dimensional methods of observation. There was, by 1900, a network of meterological stations in the Northern Hemisphere, but the information it gathered was information about what was happening at the surface of Earth -- or at best a few meters above it. It had been possible to expand this network vertically by building meteorological mountain stations, but there is an influence from the topographical and thermal effects of mountains.

Manned balloon flight would allow the investigation of three dimensional structure of the atmosphere up to very great heights in the free air. Bezold was certain that this information would allow the theoretical unification of meteorology as a physics of the ocean of air. Bezold was president of Berlin Aeronautical Society and was an enthusiastic promoter of manned ballooning for scientific purposes. Working together with Richard Aßmann and Arthur Berson, Bezold had requested a grant from the kaiser of 25,000 marks in 1892 to support manned flights from Berlin. The young kaiser, enthused by the project, gave him 50,000 marks instead.