Jump to content

Alfred Wegener: Difference between revisions

Line 96:
Alfred was directed to undertake a historical and critical study of a set of astronomical tables, the Alfonsine Tables. Commissioned by Alfonso X "The Wise" of Castile in the 13th century, they were used for navigation and time reckoning. They allowed one to find the position of the Sun, Moon, and planets at any hour and minute. They were the tables of reference throughout Europe from about 1330 until Erasmus Reinhold's Prutenic Tables appeared in 1551.
 
The creation of a mondernizedmodernized edition of these tables had applications to a problem in astronomy in which both Bauschinger and Forster were keenly interested. About thirty years before, in 1870, the American astronomer Simon Newcomb had discovered that the set of tables he was using to predict the position of the Moon showed increasing deviations from the Moon's actual position. This was disturbing to Newcomb because the tables in question had been prepared by the German astronomer Peter Hansen, probably one of the greatest master of celestial mechanics since Laplace. To figure out what had gone wrong, Newcomb traveled to Europe to study even older tables of the Moon's motion. He found that the farther he worked back before 1750, the greater the discrepancy became. He conceived the notion, based on his confidence in Hansen, that the reason for the discrepancy had to be a variation in Earth's rate of rotation. Newcomb worked steadily on this problem until the end of his life, assembling astronomical records back to preclassical antiquity to try to determine the pattern of rotational variation.
 
These Alfonsine Tables were now rare books available only in great university libraries. They were written in a difficult form of Medieval Latin and couched in terms of the of the Ptolemaic (Earth-centered) solar system. Moreover, the numerical values in the planetary tables employed base 60 sexagesimal system rather than the decimal system both for angular measurement and for date and time reckoning.
Line 102:
Alfred began his work in September 1904, comparing the six existing principal Latin editions to eliminate printer's error. He then translated the text from Latin to German. Then, he converted the tables from sexagesimal to decimal values, a task involving about 9,000 calculations. That was the heart of the task, but there was a good deal more.
 
Alfred provided a correction for the difference between Toledo, Spain -- the 0° of longitude in the tables -- and Greenwich, England -- the 0° of longitude for modern astronomy. He uncovered a systematic sixteen-minute offset in the tables resulting from a discrepancy between the Alfonsine way of calculating the mean time of a transit and the modern method of doing so. Finally, he devised a formal to eliminate a correction in the tables meant to account for the precession of the equinoxes which empoloyedemployed a (nonexistent) celestial motion called a "trepidation", which the modern user must discount. He also drew up a concise glossary of Latin technical terms for which there were no German counterparts, since the concepts in question had vanished from astronomy before German had become a scientific language.
 
He had to provide extensive notes to give astronomical calculators the means to use them. The calculators in question were not machines, but observatory staff whose job it was to perform actual calculations. It required several explanations. The tables for the Sun are used differently thatnthan the tables for the Moon. Meanwhile, there are separate sets of tables for each of the planets. Latitudes are calculated in a way quite different from the calculation of longitude and distance. These require separate tables and figures showing the geometry of the relationships.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.